Fuel cells

 fig_1fc

The design of polymer electrolyte membrane fuel cell (PEMFC) requires careful consideration on the thermal, water and gas managements to ensure good stack performance. Our group aims to develop a mathematical and numerical framework that serves two main objectives: the first involves on the study of the fundamental aspect of the PEMFC and the associated transport, electrochemical processes and multiphase flow at functional layers, single cell and stack level. The second objective concerns on the development and integration of applied research for PEMFC single cell and stack, including new designs, innovations and addressing management issues (thermal, water and gas) to achive an enhanced and optimum fuel cell performance.

Selected publications:

  1. .C. Kurnia, B.A. Chaedir, A.P. Sasmito*T. Shamim, Progress on open cathode proton exchange membrane fuel cell: Performance, designs, challenges and future directions, Applied Energy 283 (2021) 116359, doi:10.1016/j.apenergy.2020.116359
  2. J.C. Kurnia, A.P. Sasmito*, T. Shamim, Advances in proton exchange membrane fuel cell with dead-end anode operation: A review, Applied Energy 252 (2019) 113416, doi:10.1016/j.apenergy.2019.113416
  3. R. Vuppala, B.A. Chaedir, L. Jiang, L. Chen, M. Aziz, A.P. Sasmito*, Optimization of membrane electrode assembly of PEM fuel cells by response surface method, Molecules 24 (2019) 3097, doi: 10.3390/molecules24173097
  4. A. Soopee, A.P. Sasmito, T. Shamim*, Water droplet dynamics in a dead-end anode proton exchange membrane fuel cell, Applied Energy  233-234 (2019) 300-311, doi:10.1016/j.apenergy.2018.10.001
  5. J.C. Kurnia, A.P. Sasmito*, T. Shamim, Performance evaluation of a PEM fuel cell stack with variable inlet flows under simulated driving cycle conditions, Applied Energy 206 (2017) 751–764, doi: 10.1016/j.apenergy.2017.08.224. [SCI]
  6. A.P. Sasmito*, J.C. Kurnia, T. Shamim, A.S. Mujumdar, Optimization of an open-cathode polymer electrolyte fuel cells stack utilizing Taguchi method,  Applied Energy 185 (2017) 1225–1232 doi:10.1016/j.apenergy.2015.12.098 [SCI]
  7. A. Gomez, A.P. Sasmito, T. Shamim*, Investigation of the Purging Effect on a Dead-End Anode PEM Fuel Cell-Powered Vehicle during Segments of a European Driving Cycle, Energy Conversion and Management  106 (2015) 951-957, doi:10.1016/j.enconman.2015.10.025 [SCI]
  8. H. Alzeyoudi, A.P. Sasmito, T. Shamim*, Performance evaluation of an open-cathode PEM fuel cell stack under ambient conditions: Case study of United Arab Emirates, Energy Conversion and Management 105 (2015) 798-809, doi:10.1016/j.enconman.2015.07.082 [SCI]
  9. A. Raj, A.P. Sasmito, T. Shamim*, Numerical investigation of the effect of operating parameters on a planar solid oxide fuel cells, Energy Conversion and Management 90 (2015) 138-145, doi:10.1016/j.enconman.2014.10.055 [SCI]
  10. A.P. Sasmito, M.I. Ali, T. Shamim*, A factorial study to investigate the purging effect on the performance of a dead-end anode PEM fuel cell stack, Fuel Cells 15 (2015) 160-169, doi:10.1002/fuce.201300069. [SCIE]
  11. A.P. Sasmito*, T. Shamim, E. Birgersson, A.S. Mujumdar, Numerical Investigation of Water and Temperature Distributions for Open-Cathode Polymer Electrolyte Fuel Cell Stack with Edge Cooling, ASME Journal of Fuel Cell Science and Technology 2013;10;061003.
  12. A.P. Sasmito*, J.C. Kurnia, A.S. Mujumdar, Numerical Evaluation of Various Gas and Coolant Channel Designs for High Performance Liquid-Cooled Proton Exchange Membrane Fuel Cell Stacks, Energy 2012;44:278-291.
  13. A.P. Sasmito* and A.S. Mujumdar, Performance Evaluation of a Polymer Electrolyte Fuel Cell with a Dead-End Anode: A Computational Fluid Dynamic Study, International Journal of Hydrogen Energy 2011;36:10917-10933.
  14. A.P. Sasmito, E. Birgersson*, A.S. Mujumdar, Numerical Investigation of Liquid Water Cooling for a Proton Exchange Membrane Fuel Cell Stack, Heat Transfer Engineering 2011;32:151-167.
  15. A.P. Sasmito, K.W. Lum, E. Birgersson*, A.S. Mujumdar, Computational Study of Forced-Air Convection in an Open-Cathode Polymer Electrolyte Fuel Cells Stack, Journal of Power Sources 2010;195:5550-5563.

Thermal energy storage

 pcm

Recent years, phase change material (PCM) has received significant attention due to their potential for thermal energy storage. This is attributed to their high latent heat of fusion during a phase change. PCM undergo melting (also known as charging) and solidification (also known as discharging) as it is exposed to hot and cold environment respectively. Despite its huge potential, application of PCM as thermal energy storage has certain drawbacks: the requirement of high heat transfer rates during solidification, lower thermal conductivity of PCMs, need of external nucleating agents, limited cycles of melting and solidification. In attempt to enhance the performance of PCM assisted thermal storage, numerous study and investigation have been conducted and various methods have been proposed. One route to enhance the performance of PCM assisted thermal storage is by changing the thermal properties of PCM and/or operating conditions, arrangement of thermal energy storage – such as use of extended surfaces. Our group focuses on fundamental as well as applied aspect of thermal energy storage to improve its performance as well as explore new applications of thermal storage.

Relevant publications:

  1. M. Fong, J.C. Kurnia, A.P. Sasmito*, Application of phase change material-based thermal capacitor in double tube heat exchanger—A numerical investigation, Energies 13 (2020) 4327, doi:10.3390/en1317327
  2. L. Amiri, M. de Brito, A. Madiseh*, N. Bahrani, F. Hassani, A.P. Sasmito*, Numerical evaluation of the transient performance of rock-pile seasonal thermal energy storage systems coupled with exhaust heat recovery, Applied Sciences 10 (2020) 7771, doi:10.3390/app10217771
  3. Y. Gao*, J. An, Y. Xi, Z. Yang, J. Liu, A.S. Mujumdar, L. Wang, A.P. Sasmito*, Thermal conductivity and stability of a novel aqueous graphene oxide – Al2O3 hybrid nanofluids for cold energy storage, Applied Sciences 10 (2020) 5768, doi:10.3390/app10175768
  4. M. Fong, M. Alzoubi, J.C. Kurnia, A.P. Sasmito*, On the performance of ground coupled seasonal thermal energy storage for heating and cooling: A Canadian context, Applied Energy 250 (2019) 593-604, doi:10.1016/j.apenergy.2019.05.002
  5. L. Amiri, M. Brito, D. Baidya, A. Kuyuk, A. Madiseh*, A.P. Sasmito, F. Hassani, Numerical investigation of rock-pile based waste heat storage for remote comunities in cold climate, Applied Energy  252 (2019) 113475, doi:10.1016/j.apenergy.2019.113475
  6. J.C. Kurnia*, A.P. Sasmito, Numerical Investigation of heat transfer performance of a rotating latent heat thermal energy storage, Applied Energy 227 (2018) 542-554, doi:10.1016/j.apenergy.2017.08.087. [SCI]
  7. S.A. Ghoreishi-Madiseh, A.P. Sasmito*, F. Hassani, L. Amiri, Performance Evaluation of Large Scale Rock-Pit Seasonal Thermal Energy Storage for Application in Underground Mine Ventilation,  Applied Energy 185 (2017) 1940–1947 doi:10.1016/j.apenergy.2016.01.062 [SCI]
  8. J.C. Kurnia, A.P. Sasmito*, S.V. Jangam, A.S. Mujumdar, Improved Design for Heat Transfer Performance of a Novel Phase Change Material (PCM) Thermal Energy Storage (TES), Applied Thermal Engineering 2013;50:896-907.
  9. A.P. Sasmito*, T. Shamim, A.S. Mujumdar, Passive Thermal Management for PEM Fuel Cell Stack under Cold Weather Condition using Phase Change Materials (PCM), Applied Thermal Engineering 2013;58:615-625.
  10. A.V. Arasu*, A.P. Sasmito, A.S. Mujumdar, Numerical Performance Study of Paraffin Wax Dispersed with Alumina in a Concentric Pipe Latent Heat Storage System, Thermal Science 2013;17:419-430.
  11. A.V. Arasu*, A.P. Sasmito, A.S. Mujumdar, Thermal Performance Enhancement of Parafin Wax with Al2O3 and CuO Nanoparticles – A Numerical Study, Frontier in Heat and Mass Transfer 2011;2:043005.

Other energy sources

Our group also explore conventional as well as alternative energy sources such as geothermal energy, electrolyzer, natural heat exchanger and so forth.